用Mathematica演示级数逼近问题——傅里叶级数
1、先来作一个函数——x/2 的3阶傅里叶级数:
FourierSeries[x/2, x, 3】
并画出对比图:
Plot[{%, x/2}, {x, -3 Pi, 3 Pi}]
可以发现,只在区间{-Pi,Pi}上有可比性!
2、把级数的表达式处理一番:
FourierSeries[x/2, x, 3] // Simplify
FourierSeries[x/2, x, 3] // Simplify // TraditionalForm
FourierSeries[x/2, x, 3] // FullSimplify
FourierSeries[x/2, x, 3] // FullSimplify // TraditionalForm
3、用列表的形式,给出t/2的前10阶Fourier级数式:
Table[FourierSeries[t/2, t, n], {n, 1, 10}] //
FullSimplify // TraditionalForm
4、把列表里的所有表达式画到一起:
Plot[%, {t, -3 Pi, 3 Pi}]
5、函数t/2前10阶的Fourier级数式,对应的逼近程度(互动模拟):
Manipulate[
Plot[{t/2, Evaluate[FourierSeries[t/2, t, n]]}, {t, -Pi, Pi},
PlotRange -> 2], {n, 1, 10, 1}]
6、Manipulate[
Plot[{t/2, Evaluate[FourierSeries[t/2, t, n]]}, {t, -3 Pi, 3 Pi},
PlotRange -> 5], {n, 1, 10, 1}]
7、再尝试一些其它函数,如t^2:
Manipulate[
Plot[{t^2, Evaluate[FourierSeries[t^2, t, n]]}, {t, -3 Pi, 3 Pi}], {n, 1, 10, 1}]
8、一个分段函数:
f[x_] = Piecewise[{{1, 0 <= x < Pi}, {-1, -Pi <= x < 0}}];
运行互动代码:
Manipulate[
Show[Plot[f[x], {x, -Pi, Pi}, PlotStyle -> {Thickness[0.01], Red},
PlotRange -> {-1.5, 1.5}],
Plot[Evaluate[FourierSeries[f[x], x, n]], {x, -Pi, Pi},
PlotStyle -> {Thickness[0.01], Blue}]], {n, 1, 36, 1}]
9、再来一个分段函数:
f[x_] = Piecewise[{{0, 0 <= x < Pi}, {x, -Pi <= x < 0}}]
仍旧用上一步的互动代码,逼近情况的互动模拟效果如下!