室内定位技术:UWB如何进行精确定位?
1、到达角度定位(AOA)和信号强度分析法(RSS)
AOA通过获取被测点到两个接收机的信号到达角度进行定位,需要配置复杂的天线系统,且角度误差对定位精度的影响远比测距误差大。RSS则根据信号的传播模型,利用接收信号的强度与信号传播距离的关系,对目标进行定位。这种方法的定位覆盖距离较近,且对信道传输模型的依赖性非常大,多径以及环境条件的变化都会使其精度严重恶化,特别是距离估计的精度与信号的带宽无关,不能发挥 UWB 带宽大的优势。
所以,RSS和AOA方法一般不单独用于UWB定位,只能作为辅助手段进行初级粗定位,UWB实现精确定位主要依靠精密测距完成。
2、到达时间定位(TOA)
被测点(标签)发射信号到达 3 个以上的参考节点接收机(基站),通过测量到达不同接收机所用的时间,得到发射点与接收点之间的距离,然后以接收机为圆心,所测得的距离为半径做圆,3 个圆的交点即为被测点所在的位置。但是TOA要求参考节点与被测点保持严格的时间同步,多数应用场合无法满足这一要求。
该方法实现过程中,需要测得定位标签与每个基站的距离信息,从而定位标签需要与每个基站进行来回通信,因此定位标签功耗较高。该定位方法的优势在于在定位区域内外(基站围成区域的内外),都能保持很高的定位精度。

3、到达时间差定位(TDOA)
与TOA类似,只是测量得到的是时间差而非绝对时间。这种方法只需参考节点之间保持同步,不要求参考节点与被测点之间的严格的时间同步,使系统相对简化,所以在定位系统中应用最广。
TDOA定位即双曲线定位,二维定位中需要使用4个定位基站。通过测量标签到每两个基站之间的距离差,距离差等于常量即可绘制出双曲线,而曲线交点即可确定标签坐标。该方法实现过程中,标签只需要广播一次UWB信号即可,因此有利于标签的功耗及标签并发数量。

1、为了对定位原理深入了解,我们可对定位系统结构进行分析。EHIGH恒高定位系统由应用层、服务层、传输层和感知层(定位基站和定位标签)构成,传输层主干网通信方式采用有线或无线的通信方式。系统架构如下图所示:

2、感知层
感知层主要包括定位基站和定位标签。基站和标签是定位系统的核心设备,标签会按时隙广播携带有自身ID号的无线电信号,定位基站接收到标签发送的信号后,将接收到信号的时间戳和标签ID卡号通过主干网传输给服务层,完成对标签卡的定位,基站也可以接收到应用层下发的指令,完成相关的设置。
3、传输层
传输层也称主干通信网(简称“主干网”),是基站与服务层、应用层之间的数据传输通道,向下将应用层相关指令传输给基站,向上将定位原始数据(标签与基站之间距离)传输给服务层,采用有线光纤方式进行数据传输。
4、服务层
通过标签与覆盖该区域定位基站进行测距,顶层通过各基站的位置和标签距离,通过TDOA算法或者TOA算法解算出标签坐标。除此之外,服务层还提供了灵活的设备管理和网络管理功能,以及各项前端功能和应用接口。
5、应用层
通过服务层获取定位标签的具体位置,以一维、二维或三维地图的形式实时显示标签的位置,并提供轨迹回放,人员信息管理和呼叫求救等功能。
此外,应用层还提供websocket接口和http接口,通过websocket接口可获取标签卡的实时位置数据,通过http接口可获取系统相关的数据,因此,该定位系统易于二次开发和集成。