如何快速求出一个数的因数数量,并求出它的因数和
假如一个数的质因数分解为a1^p1+a2^p2+......an^pn,则共有(p1+1)*(p2+1)*......*(pn+1)个因数;它的因数和SUM=(a1^0+a1^1+a1^2+...+a1^p1) * (a2^0+a2^1+a2^2+...+a2^p2) * ...... * (an^0+an^1+an^2+...+an^pn)
例:将108质因数分解:2*2*3*3*3,也就是:2^2 * 3^3。
可以看到108的因数有2^0*3^0,2^0*3^1,2^1*3^0,2^1*3^1...
所以108总共有3*4=12种配对方式。
它的因数和:
SUM=2^0*(3^0+3^1+3^2+3^3)+2^1*(3^0+3^1+3^2+3^3)+2^2*(3^0+3^1+3^2+3^3)=(2^0+2^1+2^2) * (3^0+3^1+3^2+3^3)

扩展资料:
因数的相关性质:
1、整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。
2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。
3、合数:除了1和它本身还有其它正因数。
4、有正因数1,所以它既不是质数也不是合数。
5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
6、公因数只有1的两个非零自然数,叫做互质数。
7、非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8、所有不为零的整数都是0的因数。
9、最小的质数。
10、最小的合数。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:33
阅读量:130
阅读量:171
阅读量:183
阅读量:115