【微分几何】三叶玫瑰线的旋转面以及膨胀面

2025-09-26 03:48:54

1、旋转面的参数方程是:

{-Cos[u] Cos[v] Sin[3 u], -Cos[u] Sin[3 u] Sin[v], -Sin[u] Sin[3 u]}

消去参数u、v,可以得到它的隐函数方程:

(x^2 + y^2 + z^2)^2 + 3 (x^2 + y^2) z - z^3==0

【微分几何】三叶玫瑰线的旋转面以及膨胀面

2、三叶玫瑰线的极坐标方程是:

r=Sin[3u]

那么r+2,就是一种膨胀结果,r+2绕着对称轴旋转,得到的曲面如下:

【微分几何】三叶玫瑰线的旋转面以及膨胀面

3、r+3的旋转曲面:

【微分几何】三叶玫瑰线的旋转面以及膨胀面

4、r+10刚好是三叶玫瑰线膨胀为凸曲线的临界状态,此时的旋转曲面:

【微分几何】三叶玫瑰线的旋转面以及膨胀面

5、r+15的旋转曲面:

【微分几何】三叶玫瑰线的旋转面以及膨胀面

6、r+30的旋转曲面,已经有【球】样了。

【微分几何】三叶玫瑰线的旋转面以及膨胀面

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
猜你喜欢