OpenCV图像相似度ORB算法(图像特征比对)
1、引入必要的头文件:
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/nonfree/features2d.hpp"
2、声明命名空间:
using namespace std;
using namespace cv;
3、声明函数:
int getORB(char * imagePatha,char * imagePathb);
4、添加函数:
int getORB(char * imagePatha,char * imagePathb){
double t;
t=getTickCount();
Mat img_1 = imread(imagePatha);
Mat img_2 = imread(imagePathb);
if (!img_1.data || !img_2.data) {
cout << "error reading images " << endl; return -1;
}
ORB orb;
vector<KeyPoint> keyPoints_1, keyPoints_2;
Mat descriptors_1, descriptors_2;
orb(img_1, Mat(), keyPoints_1, descriptors_1);
orb(img_2, Mat(), keyPoints_2, descriptors_2);
BruteForceMatcher<HammingLUT> matcher;
vector<DMatch> matches;
matcher.match(descriptors_1, descriptors_2, matches);
double max_dist = 0; double min_dist = 100;
for( int i = 0; i < descriptors_1.rows; i++ ) {
double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_1.rows; i++ ) {
if( matches[i].distance < 0.6*max_dist ){
good_matches.push_back(matches[i]);
}
}
t=getTickCount()-t;
t=t*1000/getTickFrequency();
Mat img_matches;
drawMatches(img_1, keyPoints_1, img_2, keyPoints_2,good_matches, img_matches,
Scalar::all(-1), Scalar::all(-1),vector<char>(),
DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
imshow( "Match", img_matches);
printf( "%f ms\n", t );
cvWaitKey(0);
return 0;
}
5、调用:
getORB("/home/chery/eyesame/1.jpg","/home/chery/eyesame/2.jpg");
即可返回相似度比较的图像。