y=(x^3+6x^2).(x-1)^2的图像示意图
1、函数的定义域∵x-1≠0,∴x≠1,即函数的定义域为:(-∞,1)∪(1,+∞)。

2、∵y=(x^3+6x^2)/(x-1)^2
∴dy/dx
=[(3x^2+12x)(x-1)^2-2(x-1)(x^3+6x^2)]/(x-1)^4
=[(3x^2+12x)(x-1)-2(x^3+6x^2)]/(x-1)^3
=x[(3x+12)(x-1)-2(x^2+6x)]/(x-1)^3
=x(x^2-3x-12)/(x-1)^3

3、令dy/dx=0,则x1=0或x^2-3x-12=0.
当x^2-3x-12=0时,有:
x2=(3-√57)/2,x3=(3+√57)/2.
(1).当x∈((3-√57)/2,0), (1,(3+√57)/2]时,
dy/dx<0,此时函数y为减函数;
(2).当x∈(-∞,(3-√57)/2],[0,1),((3+√57)/2,+∞)时,
dy/dx>0,此时函数y为增函数。

4、函数的凸凹性
∵dy/dx=(x^3-3x^2-12x)/(x-1)^3
∴d^2y/dx^2
=[(3x^2-6x-12)(x-1)^3-3(x^3-3x^2-12x)(x-1)^2]/(x-1)^6
=[(3x^2-6x-12)(x-1)-3(x^3-3x^2-12x)]/(x-1)^4
=(30x+12)/(x-1)^4
=6(5x+2)/(x-1)^4 。

5、令d^2y/dx^2=0,则:
则: 5x+2=0,即x=-2/5.
(1).当x∈(-∞,-2/5)时,d^2y/dx^2<0,
此时函数y为凸函数;
(2).当x∈(-2/5,1)∪(1,+∞)时,
d^2y/dx^2>0,此时函数y为凹函数

6、如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凹函数的充要条件是f''(x)>=0;f(x)在区间I上是凸函数的充要条件是f''(x)<=0。
7、lim(x→-∞)(x^3+6x^2)/(x-1)^2=-∞
lim(x→1+)(x^3+6x^2)/(x-1)^2=+∞
lim(x→1-)(x^3+6x^2)/(x-1)^2=+∞
lim(x→+∞)(x^3+6x^2)/(x-1)^2=+∞
8、x -6.27 -5.27 -4.27 -3.27 -2.27
y -0.20 0.515 1.135 1.601 1.797
x -2.27 -1.33 -0.4 -0.2 0
y 1.797 1.521 0.457 0.161 0

9、x 0 0.1 0.2 0.3 0.4
y 0 0.075 0.387 1.157 2.844
x 2 2.81 3.63 4.45 5.27
y 32 21.23 18.34 17.38 17.16
x 5.27 5.47 5.67 5.87 6.07
y 17.16 17.17 17.20 17.24 17.30

10、综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,函数的示意图如下:
