函数y=2^(x^2+x+5)的图像示意图画法步骤
1、函数的定义域,由函数特征知,函数是指数复合函数,故函数的自变量x可以取全体实数,即定义域为:(-∞,+∞)。
2、计算函数的一阶导数,即可计算出函数的驻点,根据驻点符号再判断函数的单调性,进而求解函数的单调凸凹区间。
3、函数的单调性是函数的重要性质,反映了随着自变量的增加函数值的变化趋势,它是研究函数性质的有力工具,在解决比较大小、解决函数图像、值域、最值、不等式问题都有很重要的作用。
4、函数的凸凹性解析步骤:计算函数的二阶导数,根据二阶导数符号,即可判断函数的凸凹性。
5、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
6、函数在负无穷远处和正无穷远处的极限计算。
7、根据函数的特征及定义域、单调性等,列举函数五点图表如下:
8、根据以上函数的定义、单调、凸凹等性质,结合函数的单调和凸凹区间及极限等性质,函数y的示意图可以简要画出。
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:39
阅读量:88
阅读量:64
阅读量:53
阅读量:26