pandas教程:[22]填充缺失值
当数据中存在NaN缺失值时,我们可以用其他数值替代NaN,主要用到了DataFrame.fillna()方法,下面我们来看看具体的用法:
先来创建一个带有缺失值的数据框
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/b57fb6db574afa32e3533c4354b2dc19cf2c1467.jpg)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/6834ecc4ec99594384ce584a95425d6b05d10467.jpg)
使用0替代缺失值(当然你可以用任意一个数字代替NaN)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/bf6e59704618dfda6bf42b3289214f5792567767.jpg)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/974a2f21056104a3ce26931a63d7592ae2ef6b67.jpg)
用一个字符串代替缺失值
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/988e1c532f63238549f9f225cce833e038725d67.jpg)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/836a6aee1c324b18ede39c4553a7263349844867.jpg)
用前一个数据代替NaN:method='pad'
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/fdb4f00d3aceaad7bea41c56eee7340f6578b867.jpg)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/40d2d0e8b004541b0fc0e292869a310e1699a667.jpg)
与pad相反,bfill表示用后一个数据代替NaN。这里我们增加一个知识点,用limit限制每列可以替代NaN的数目,下面我们限制每列只能替代一个NaN
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/94af5fc1b727ac53eb4781982ecadce891489967.jpg)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/8974c38a59de450789d128c45e413a8ca7088567.jpg)
除了上面用一个具体的值来代替NaN之外,还可以使用平均数或者其他描述性统计量来代替NaN
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/e40b3127e7ef280679d18269b840b6f39087f267.jpg)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/bfa52adaf05e4a235ba1eea91dd818196020e267.jpg)
另外,我们还可以选择哪一列进行缺失值的处理
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/7496877bbbf4da585d0acefdea0f8b56ac04d767.jpg)
![pandas教程:[22]填充缺失值](https://exp-picture.cdn.bcebos.com/116b1ae23ea23a42e4aab0a43733ec3835bbc067.jpg)
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:46
阅读量:21
阅读量:91
阅读量:120
阅读量:135