x->0,x-sinx~1-cosx 证明

2025-10-29 04:34:14

1、第一步,问题转化

求证x->0,x-sinx~1-cosx。相当于证明 (s-sinx)'=1-cosx。 

2、第二步,套用求导公式

[f(x+dx)-f(x)]/dx

令f(x)=x-sinx,求f(x)'。

[f(x+dx)-f(x)]/dx

->{[(x+dx)-sin(x+dx)]-(x-sinx)}/dx

={[(x+dx)-(sinxcosdx+cosxsindx)]-(x-sinx)}/dx

=(x+dx-sinxcosdx-cosxsindx-x+sinx)/dx

=(x-x+dx-sinxcosdx+sinx-cosxsindx)/dx

=(dx-sinxcosdx+sinx-cosxsindx)/dx

=(dx/dx)-(sinxcosdx-sinx+cosxsindx)dx

=1-(sinxcosdx-sinx+cosxsindx)/dx

因为x->0,cosdx~1

所以上式

=1-(sinx*1-sinx+cosxsindx)/dx

=1-(sinx-sinx+cossindx)/dx

=1-(cosxsindx)/dx

因为x->0,(sindx)/dx~1

所以上式

=1-cosx*(sindx)/dx

=1-cosx

声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
相关推荐
  • 阅读量:121
  • 阅读量:118
  • 阅读量:102
  • 阅读量:25
  • 阅读量:121
  • 猜你喜欢