Mathematica基础——计算二重积分
1、计算积分 x^2*y + x,其中积分区域是矩形区域——{2<=y<=4&&1<=x<=3}:
Integrate[( x^2*y + x ) Boole[2<=y<=4&&1<=x<=3], {x, -10, 10}, {y, -10, 10}]
2、这其实是求一个曲面柱体的体积。
3、计算积分x^2-y^2,其中积分区域是——{0<=y<=Sin[x]&&0<=x<=Pi}:
Integrate[(x^2-y^2) Boole[0<=y<=Sin[x]&&0<=x<=Pi], {x, -10, 10}, {y, -10, 10}]
4、积分区域的形状如下图:
RegionPlot[0<=y<=Sin[x]&&0<=x<=Pi,{x,0,Pi},{y,0,1}
5、计算x*Sqrt[y]的积分,积分区间是曲线y=x^2和曲线y=Sqrt[x]所夹的区域:
Plot[{x^2,Sqrt[x]},{x,0,1.01}]
画出积分区域:
RegionPlot[x^2<=y<=Sqrt[x],{x,0,1.01},{y,0,1.01}]
计算积分:
Integrate[x Sqrt[y] Boole[x^2<=y<=Sqrt[x]],{x, -10, 10}, {y, -10, 10}]
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:39
阅读量:178
阅读量:170
阅读量:63
阅读量:185