python 线性代数:[16]线性组合均值协方差阵
这里从《实用多元统计分析》(理查德~约翰逊)这本书里摘出一个例子,看题目:
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/a13bbe10bc33ec3861c81a5a295f0c14c37b3cc8.jpg)
下面我们就使用Python的numpy和sympy包来完成这个作业,目的是让大家学会使用符号运算并理解线性组合的均值和协方差矩阵的求法。
引入相关模块
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/35f2224133bad341660ee282427622bc7cc52cc8.jpg)
创建几个符号,代码已知量
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/b442d6d246fe474eb6f0300ab0ef354f51b81fc8.jpg)
sigma代表已知的X矩阵的协方差矩阵
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/92dd32f7dfb2dc194f5f58ae95def4dca13910c8.jpg)
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/edd84743040148fe91315ede8fd149299b8802c8.jpg)
u代表已知的x矩阵的均值向量
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/e57a258602214f573325500e732064fb970b73c8.jpg)
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/e1390a31dfb6326ce6159a7a89532f63228560c8.jpg)
、这是线性组合的系数矩阵
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/1d735518512c8cf113d42586c384cde34a2c46c8.jpg)
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/732a12e265e7340fb90b179635b9763e20c2b4c8.jpg)
计算均值向量,利用均值向量的计算公式:
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/b1454a1bd10ff226e0e932bb9c99e92abbb8a4c8.jpg)
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/07c98f2ca5cadce86e3b0349fcf7980e5e2095c8.jpg)
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/b87bd38920c5260f8241de3fd2de4507890189c8.jpg)
同样,我们利用协方差矩阵的公式:
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/a44e8afc508c9bced08c89c2d6dd884ce44afac8.jpg)
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/e6ae36066b0192dd1234b5461a87031c98c0f0c8.jpg)
求得结果为:
![python 线性代数:[16]线性组合均值协方差阵](https://exp-picture.cdn.bcebos.com/a9338a1fbee434dadd2a4996f271fe1d97d8e4c8.jpg)
声明:本网站引用、摘录或转载内容仅供网站访问者交流或参考,不代表本站立场,如存在版权或非法内容,请联系站长删除,联系邮箱:site.kefu@qq.com。
阅读量:49
阅读量:195
阅读量:121
阅读量:21
阅读量:122